Directions: Write The Equation (In Center-Radius Form) Of Each Of The Following Circles Given The Ce

Directions: Write the equation (in center-radius form) of each of the following circles given the center and the radius. Write your answers on a separate sheet of paper. Equation Center Radius (Center-Radius Form) 1. origin 2 2. (1, 2) 5 3. ( 36) 11 4. (-2,-7) 15 5, (-5,8) 3/

✒️CIRCLE EQUATION

••••••••••••••••••••••••••••••••••••••••••••••••••

 \largenderline{\mathbb{DIRECTIONS}:}

  • Write the equation (in center-radius form) of each of the following circles given the center and the radius. Write your answers on a separate sheet of paper.

••••••••••••••••••••••••••••••••••••••••••••••••••

 \largenderline{\mathbb{ANSWERS}:}

 \quad \large \rm{1) \; x^2 + y^2 = 4}

 \quad \large \rm{2) \; (x - 1)^2 + (y-2)^2 = 25}

 \quad \large \rm{3) \; (x - 3)^2 + (y + 6)^2 = 121}

 \quad \large \rm{4) \; (x + 2)^2 + (y+7)^2 = 225}

 \quad \large \rm{5) \; (x + 5)^2 + (y-8)^2 = 18}

••••••••••••••••••••••••••••••••••••••••••••••••••

 \largenderline{\mathbb{SOLUTION}:}

» The equation of the circle can be written in standard form as:

  •  (x - h)^2 + (y - k)^2 = r^2

» Where (h, k) is the center and r is the radius.

\sf •••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••

#1: Center = (0, 0) and Radius = 2

  •  (x - 0)^2 + (y-0)^2 = 2^2

  •  x^2 + y^2 = 4

\sf •••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••

#2: Center = (1, 2) and Radius = 5

  •  (x - 1)^2 + (y-2)^2 = 5^2

  •  (x - 1)^2 + (y-2)^2 = 25

\sf •••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••

#3: Center = (3, -6) and Radius = 11

  •  (x - 3)^2 + (y-(\text-6))^2 = 11^2

  •  (x - 3)^2 + (y + 6)^2 = 121

\sf •••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••

#4: Center = (-2, -7) and Radius = 15

  •  (x -(\text-2))^2 + (y-(\text-7))^2 = 15^2

  •  (x + 2)^2 + (y+7)^2 = 225

\sf •••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••

#5: Center = (-5, 8) and Radius = 3√2

  •  (x - (\text-5))^2 + (y-8)^2 = (3\sqrt2\,)^2

  •  (x + 5)^2 + (y-8)^2 = 9(2)

  •  (x + 5)^2 + (y-8)^2 = 18

••••••••••••••••••••••••••••••••••••••••••••••••••

(ノ^_^)ノ


Comments